Optimal Control of Semilinear Parabolic Equations by BV-Functions
نویسندگان
چکیده
منابع مشابه
Optimal Control of Semilinear Parabolic Equations by BV-Functions
Here, we assume that Ω is a bounded domain in R, 1 ≤ n ≤ 3, with a Lipschitz boundary Γ, Q = Ω × (0, T ), Σ = Γ × (0, T ), and y0 ∈ L∞(Ω). BV (0, T ) denotes the space of bounded variation functions defined in (0, T ), with 0 < T < ∞ given. The controllers in (P) are supposed to be separable functions with respect to fixed spatial shape functions gj and free temporal amplitudes uj . The specifi...
متن کاملOptimal Control of Nonsmooth, Semilinear Parabolic Equations
This paper is concerned with an optimal control problem governed by a semilinear, nonsmooth operator differential equation. The nonlinearity is locally Lipschitz-continuous and directionally differentiable, but not Gâteaux-differentiable. Two types of necessary optimality conditions are derived, the first one by means of regularization, the second one by using the directional differentiability ...
متن کاملSensitivity Analaysis for Parametric Optimal Control of Semilinear Parabolic Equations
Parametric optimal control problems for semilinear parabolic equations are considered. Using recent Lipschitz stability results for solutions of such problems, it is shown that, under standard coercivity conditions, the solutions are Bouligand differentiable (in L, p < ∞) functions of the parameter. The differentials are characterized as the solutions of accessory linear-quadratic problems. A u...
متن کاملOptimal Control Problems Governed by Semilinear Parabolic Equations with Low Regularity Data
We study the existence of optimal controls for problems governed by semilinear parabolic equations. The nonlinearities in the state equation need not be monotone and the data need not be regular. In particular, the control may be any bounded Radon measure. Our examples include problems with nonlinear boundary conditions and parabolic systems.
متن کاملStrict Lyapunov functions for semilinear parabolic partial differential equations
For families of partial differential equations (PDEs) with particular boundary conditions, strict Lyapunov functions are constructed. The PDEs under consideration are parabolic and, in addition to the diffusion term, may contain a nonlinear source term plus a convection term. The boundary conditions may be either the classical Dirichlet conditions, or the Neumann boundary conditions or a period...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: SIAM Journal on Control and Optimization
سال: 2017
ISSN: 0363-0129,1095-7138
DOI: 10.1137/16m1056511